Substrate specificity and interferences of a direct-electron-transfer-based glucose biosensor.

نویسندگان

  • Alfons K G Felice
  • Christoph Sygmund
  • Wolfgang Harreither
  • Roman Kittl
  • Lo Gorton
  • Roland Ludwig
چکیده

OBJECTIVE Electrochemical sensors for glucose monitoring employ different signal transduction strategies for electron transfer from the biorecognition element to the electrode surface. We present a biosensor that employs direct electron transfer and evaluate its response to various interfering substances known to affect glucose biosensors. METHODS The enzyme cellobiose dehydrogenase (CDH) was adsorbed on the surface of a carbon working electrode and covalently bound by cross linking. The response of CDH-modified electrodes to glucose and possible interfering compounds was measured by flow-injection analysis, linear sweep, and chronoamperometry. RESULTS Chronoamperometry showed initial swelling/wetting of the electrode. After stabilization, the signal was stable and a sensitivity of 0.21 µA mM-1 cm-2 was obtained. To investigate the influence of the interfering substances on the biorecognition element, the simplest possible sensor architecture was used. The biosensor showed little (<5% signal deviation) or no response to various reported electroactive or otherwise interfering substances. CONCLUSIONS Direct electron transfer from the biorecognition element to the electrode is a new principle applied to glucose biosensors, which can be operated at a low polarization potential of -100 mV versus silver/silver chloride. The reduction of interferences by electrochemically active substances is an attractive feature of this promising technology for the development of continuous glucose biosensors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The potential use of hydrazine as an alternative to peroxidase in a biosensor: comparison between hydrazine and HRP-based glucose sensors.

The potential use of hydrazine sulfate was examined for the catalytic reduction of enzymatically generated H2O2 in a biosensor system. The performance of the hydrazine-based sensor was compared with an HRP-based glucose sensor as a model of a biosensor. Hydrazine and HRP were covalently immobilized onto a conducting polymer layer with glucose oxidase. The direct electron transfer reactions of t...

متن کامل

ZnO-nanorods/graphene heterostructure: a direct electron transfer glucose biosensor

ZnO-nanorods/graphene heterostructure was synthesized by hydrothermal growth of ZnO nanorods on chemically reduced graphene (CRG) film. The hybrid structure was demonstrated as a biosensor, where direct electron transfer between glucose oxidase (GOD) and electrode was observed. The charge transfer was attributed to the ZnO nanorod wiring between the redox center of GOD and electrode, and the Zn...

متن کامل

Amperometric glucose biosensor based on mediated electron transfer between immobilized glucose oxidase and plasma-polymerized thin film of dimethylaminomethylferrocene on sputtered gold electrode.

We propose an electron transfer-mediated amperometric enzyme biosensor based on plasma-polymerized thin film of dimethylaminomethylferrocene (DMAMF) on a sputtered gold electrode. The DMAMF plasma-polymerized film is deposited directly onto the surface of the electrode under dry conditions. The resulting thin film not only has redox sites but also is extremely thin (approximately 20 nm), adhere...

متن کامل

Enzyme Fuel Cell for Cellulolytic Sugar Conversion Employing FAD Glucose Dehydrogenase and Carbon Cloth Electrode Based on Direct Electron Transfer Principle

An enzyme fuel cell employing a carbon cloth electrode and bacterial FAD dependent glucose dehydrogenase (FADGDH) based on the direct electron transfer principle was constructed, and its scalability and cellulolytic sugar conversion were investigated. FADGDH was immobilized on the carbon cloth electrode together with carbon paste to form a multi-module type enzyme fuel cell by combining platinu...

متن کامل

A glucose biosensor based on direct electrochemistry of glucose oxidase immobilized on nitrogen-doped carbon nanotubes.

A novel biosensor for glucose was prepared by immobilizing glucose oxidase (GOx) on nitrogen-doped carbon nanotubes (CNx-MWNTs) modified electrode. The CNx-MWNTs membrane showed an excellent electrocatalytic activity toward the reduction of O(2) due to its diatomic side-on adsorption on CNx-MWNTs. The nitrogen doping accelerated the electron transfer from electrode surface to the immobilized GO...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of diabetes science and technology

دوره 7 3  شماره 

صفحات  -

تاریخ انتشار 2013